@ Epimorphics
» CONNECTING DATA

WHAT IS
LINKED DATA?

Linked data is an approach to publishing and sharing data on the web.

What does that mean? Surely if | just put an Excel or PDF
file on a web site then I'm publishing data? What makes
linked data different and what's the benefit?

Yes, it is certainly possible to publish data by simply putting a
document, a PDF or HTML file, on a web site. That does mean
that you can provide a narrative to explain the data. If your
only purpose is for people to read your report then that's a
fine way to publish. However, any data behind such a
document is locked away and inaccessible. People can’t take
that data and analyse and re-present it. They can’t combine it
with other data to provide new services or discover new
insights.

APPLYING PRINCIPLES OF THE WEB

Publishing the data as structured files like spreadsheets does
allow the data to be analysed and used in applications but
leads to a series of static data silos. The structure and coding
of the data is typically not explained in machine processable
form, making it hard to use the data safely without help.

There is no connection between the information in one
spreadsheet and the next, each is a separate data island. The
data is static; if a new data entry is available an hour later do
you have to re-download and figure out what has changed?
If you only want a slice of the data can you do that without
having to download the whole spreadsheet?

Linked data is about applying the principles of the web to sharing data, and doing so at a deeper level that just putting up one
big monolithic file. Instead we give each thing in the data an individual identity or URI.

For example if we were publishing a set of information about the addresses of schools in the UK we would have a URI for each
school. Then we can publish information about each school as small sets of statements, for example stating its name, its
latitude/longitude or the administrative district it falls in. If the things we link to, such as the administrative district, are
themselves represented by URIs then we are creating a web of linked information.

The district URI might give information on the boundary of the district and in turn link to other information on the current
political makeup of the administration and its education budget.

This gives us a number of benefits:

@ The data is placed in context, each
item has a web address through
which it can be annotated and
referenced, allowing explanations and
implications to be linked back directly

to the data contextualized

@® Thedatais linked (to its information
model and to related data) enabling
information to be combined across
silos, enhanced by combination with
third party data sources and

@ The data is accessible at a fine grain
over the web so that downstream
applications can run from the live
data, ensuring it is up to date, while
not preventing them using static
data dumps if preferred

The linked data approach builds upon a number of key web standards:

URIs

URIs are used to identify anything of interest in the data,
including the entities the data is about (e.g. a particular
school), the classes or concepts involved in the data (e.g.
the notion of a School) and the properties that are
available to describe schools (e.g. its name, location, or

controlling authority). While we tend to talk about URIs,
which include various different identifier schemes, the
recommendation is to use http URLs so that standard
web client software can fetch (GET) from those URLs and
hope to discover useful information on them and
onward links to other related data.

RDF

The recommended approach to representing the data
itself is to use RDF the Resource Description Framework.
RDF presents information as a series of simple
statements. Each statement (sometimes also called a
triple) says that some subject has some property with
some value. The subject of the statement is normally
identified by a URI, as is the property or predicate being
described. The value of the property, the object of the
statement, can either be a literal value (a string or
number for example) or it can be another URI.




RDF EXAMPLE

s0:401874 —

Where so: 401874 represents the URI
http://education.data.gov.uk/id/school/401874 and

rdfs: label represents the URI
http://www.w3.0rg/2000/01/rdf-schemat#label The things
being described and linked in these statements are typically
called resources, hence the name Resource Description
Framework. Thus RDF is intrinsically well-suited to the linked
data approach of linking together things identified by URls.

Apart from its simplicity and the fact that it is fundamentally
based on identifying resources through use of URIs, RDF has
one other key characteristic that makes linked data work well
—itis schemaless or open world. When representing data
using object oriented modelling such as UML or in common
database design methods one thinks in terms of data as

rdfs: label —» “Cardiff High School”

being held in containers (objects or rows of values). To
publish, store or query such data you need to know what the
allowed values are in the containers. In contrast in RDF
everything is represented as statements. Whether the
statements are about attributes, such as a label, or relational
links such as hasAdministrator,thereis no similar
notion of a fixed shape container. This means there is no
requirement to do a global, top-down schema design to
agree, for example, everything that can be said about a
school. Instead different authorities are free to publish
different statements about the same school using their own
sets of properties. This gives an intrinsic flexibility and
resilience to data published this way. However, we still need
some way of publishing agreed on vocabularies of terms that
can be used.

VOCABULARY STANDARDS - RDFS, OWL, SKOS

To complement this open world use of terms we do need some way to publish vocabularies that define what terms are
available and how those terms relate. These might range from simple controlled lists of terms, such as might be used in a
library for categorizing documents, through to rich logical models of a domain. The formal term for such a shared, well
specified vocabulary is an ontology. Though in linked data the level of formality and depth of modelling can vary widely

according to the needs of a particular application.

Of course, we identify the class by a URI such as http://education.data.gov.uk/def/school/School not by its label.

We commonly shorten URIs by defining a common prefix for a set of terms, so that if we use school: to represent the prefix
http://education.data.gov.uk/def/school/ then the earlier URI would be shown as school:School.

At heart this approach to modelling is quite straightforward. We want to represent the types or categories into which our

resources can be grouped, these are called classes.

So for example in defining an ontology to represent school information we might have a class called School. Similarly we
need properties that can be used to link a resource to another resource or to a simple literal value. Again we use URIs to

identify these properties, for example the rdfs:label used in the above example is standard way of attaching a name or text
label to any resource.

The standards that support this provide for a range of sophistication from simply listing classes and properties, through to
expressing rich axioms that define relationships between the classes and properties. RDFS, the RDF Vocabulary Language
(misleadingly the ‘S’ originally stood for‘schema’), provides a base foundation. In particular it defines terms such as rdf:type
which links a resource to its class. Then OWL, the Web Ontology Language, provides more sophisticated capabilities on top of
this.

In some situations we simply want a set of controlled terms that we are going to use as symbolic labels. They are not intended
to model the domain in the way that the classes and properties do in RDFS and OWL. We simply want some way to denote a
category separate from its textual label. The standard for that situation is SKOS or Simple Knowledge Organisation System.

SPARQL

The final key piece of the puzzle is query. If we publish data as
linked data then there is a certain amount that can be
achieved by following your nose — that is starting from the URI
of one resource, fetching it and following links to other
resources. However, in many situations we want to actually
query some aggregation of this data - to find all resources
matching some pattern. For this we need a query language
suited to this graph-like connected web of data. That query
language is SPARQL.

SEMANTIC WEB

This technology stack was originally developed as part of a
W3C initiative called the semantic web. The initiative was
sometimes mis-interpreted as rather top down, Al-like,
approach to the whole web — which was not the case.

Some people may use semantic web and linked data
interchangeably, others emphasise that linked data is a
particular pragmatic way of applying the technology stack. In
our view the technology stack is a very solid, practical way of
modelling, sharing and working with data on the web -
whatever label you want to give it.



