

INPSIRE in RDF
Deliverable 2

Version 0.2
19th May 2014

ii

Changelog

Version Date Editor Notes
0.1 1/05/2014 Stuart Williams Initial Draft
0.2 19/05/2014 Stuart Williams Added intro and section 2

iii

INPSIRE in RDF
Deliverable 2

Contents

Changelog ... ii
Contents ..iii
1 Introduction .. 1
2 Common Approach ... 1

2.1 Conceptual Issues ... 1
2.1.1 Spatial Object formulation in RDF ... 1
2.1.2 Spatial Object Versioning .. 2

2.2 Schema Transformation Issues .. 3
2.2.1 Property Reuse ... 3
2.2.2 Making use of common Linked Data vocabularies ... 3
2.2.3 Cardinality Constraints .. 3
2.2.4 Voidable properties ... 3

3 Schema and Data Conversion Tools .. 3
3.1 Schema Conversion .. 3
3.2 Instance Data Conversion ... 4

3.2.1 Conversion Tools .. 6
3.2.1.1 DCLIB .. 6
3.2.1.2 OpenRefine (formerly Google Refine, formerly GridWorks)) 7
3.2.1.3 Topbraid Composer .. 8

3.2.2 Commercial ETL Tools .. 9
4 Architecture and Infrastructure Components .. 9

4.1 Registers and Registries ... 9
4.2 Metadata and Catalogues ... 11
4.3 Geospatial Services .. 13

1

1 Introduction

This report is the second deliverable due as an expert contribution to the Are3na investigation into
INSPIRE in RDF. It contains discussion of:

 issues that remain with respect to an emerging common approach to the transformation of
INSPIRE application schema into RDFS/OWL vocabularies (see section 2)

 schema transformation tools (see section 3.1)

 instance data conversion tools/approaches (see section 3.2)

 architecture and infrastructure components (see section 4)

2 Common Approach

The proposed common approach is based largely around the application of DIS-19150-2
transformation rules, with some variation which themselves may be influential on the onward
development of that specification toward publication as an international standard.

2.1 Conceptual Issues

2.1.1 Spatial Object formulation in RDF

Whilst there are some issues of detail - e.g. the degree to which UML schema, package and class
names are embedded into the URI for derived properties, and the rules for reusing similarly (local)
named and spirited properties rather than creating multiple properties with substantially the same
definition. The most significant issue remains settling the way in which instance data is to be
formulate. In our earlier deliverable we presented three different formulations of spatial-objects
(feature instances) in RDF:

Spatial-
Objects As...

Description Pros Cons

Nodes Spatial-Object as the principal
subject.

Where possible make links to
the real-world phenomenon
using gcm:models

Can make natural use of
RDFS/OWL to express the derived
data model, e.g. to restrict the use
of properties to particular spatial-
object types.

Can easily separate RDF
statements from different spatial-
objects on the basis of statement
subject.

Doesn't require real-world subject
URI, but can usefully link to them
where available (gcm:models).
Similar in form to thematic
references.

Easily deployed in a single default
graph triplestore or as materialised
web documents (no query
capability in latter case)

Indirect statements:
Whilst the spatial-object is the explicit
subject of the RDF statements the
real subject of what is being said is
the abstracted real-world
phenomenon.

Risks conflating abstracted 'thing' and
abstracting object.

2

Spatial-
Objects As...

Description Pros Cons

Graphs Spatial-objects as a URI
named collection of
statements (a graph) about
some real-world phenomenon
plus statements about the
spatial-object(graph) itself.

Use's subject URI that separately
designate real-world thing and
abstracting spatial-object/graph.

Speaks clearly, separately and
directly about spatial object and
abstracted 'thing' i.e. addresses
conflation issue.

Easily deployed as
materialised web documents (no
query capability in this case).

Uses feature-types as mixin
classes which 'attract' property
usage on real-world subjects.

Cannot use RDFS/OWL to control
statement usage within the spatial-
object graph (but in general you can't
anyway due to OWA).

Relies on graph containment to
separate statements contributed by
different spatial-objects, so cannot be
effectively deployed in a single
default graph. Requires quad-store
for effective queriable depolyment.

Quadstores queries are more
complex.

Nodes and
Graphs

As 'Nodes' above but wrapped
in a graph/document to
provide an anchor for object
metadata.

There are now three subjects:
a real-world thing; a spatial-
object that models it; and a
graph/document which
describes both itself and the
spatial object.

Can make natural use of
RDFS/OWL to express the derived
data model, e.g. to restrict the use
of properties to particular spatial-
object types.

Doesn't require real-world subject
URI, but can usefully link to them
where available (gcm:models).
Similar in form to thematic
references.

Addresses conflation issue.

With care can be deployed in a
single default graph because
spatial-object and document
subject can be used to isolated
statements arising from a single
spatial object.

Indirect statements:

1) statements made using the

spatial-object as subject are
indirectly really about the real-
world thing;

2) statements made using the
graph/document as subject are
indirectly really about the spatial-
object.

The choice amongst the alternate formulations has its most profound affect on the generate RDF
instance data. It has a much less marked affect on the translation of INSPIRE application schema into
RDF vocabularies. "..as Nodes" and "..as Nodes and Graphs" are the most pragmatic and once one
admits the third subject (the document describing the spatial-object) they are more or less identical.
Albeit as an indirect subject, the inclusion of the document subject, but the need for graph
encapsulation makes query-able deployment more complex, requiring a quad-store rather than a
triple-store.

Making this choice is by far the most important open issue that needs to be settled.

2.1.2 Spatial Object Versioning

INSPIRE spatial-object identifiers made up of a namespaceId, localId and versionId are strongly
suggestive of the notion that spatial-objects are versioned. If versionId is embedded within an spatial-
object URI the expectations of URI persistence imply that that version will continue to be available on
an on-going basis. Conversely, a versionId may simply be an attribute of spatial-object that indicates
a change in the objects 'state'.

Three versioning models come to mind:

 Single current version (unversioned)

 Single current version (versioned)

 Versioned Spatial-Objects with version history

In all three cases an unversioned URI references designates the spatial-object over its entire history.
Retrieval of using the unversioned URI retrieves the most recent available version of the spatial-

3

objects' state; or in the case of the versioned spatial-object the most recent/current state and/or a
catalog of available versions.

The use of versioned spatial object URI is only relevant where spatial-objects are to versioned and
the version history is maintained.

2.2 Schema Transformation Issues

2.2.1 Property Reuse

The detection of and rules for processing identically named and spirited UML association roles into
shared RDF properties across UML classes within the same application schema and in different
application schema needs further study and experiment.

2.2.2 Making use of common Linked Data vocabularies

The use/re-use of existing linked-data vocabularies such as FOAF, SKOS, DCAT, VoID, ORG, CUBE,
SSN and others needs further study and experiment. Concrete rules can only be established on the
basis of an assessment of the suitability of a given vocabulary to represent data required of a given
INSPIRE schema. A softer approach may be to frame more general guidance about the adoption of
external vocabularies is specialisation of INSPIRE scheme (national or organisational specialisations),
allow practice to evolve and to consolidate 'best' practice at a later date in the light of experience. This
will require that practitioners have access to tooling that enables them to specify rules for the
incorporation of external vocabularies of their choosing.

2.2.3 Cardinality Constraints

Preserving cardinality constraints expressed in UML into derived RDFS/OWL has limited use from the
point of view of validating spatial objects, because in RDFS/OWL they are not an expression of
syntactic constraints and the open-world-assumption applies (statements do not have to be made -
and their absence in not render a model invalid). However, their preservation does usefully convey
modelling intend both to data publishers and data consumers.

2.2.4 Voidable properties

RDF has no natural means to express a voided property value. The absence of a property value from
an RDF cannot be used to infer that the property has no value, only that the properties value is
unknown or has not been disclosed.

One could conceive of a small set of void values used to convey void reasons and create unionOf
property ranges that extend the 'natural' range of the voidable property with the set of available void
reasons. However this is rather ugly.

An alternate approach is to annotate instances with explicit information about properties that have
been given void values and the reason for the void.

It is also reasonable to regard the simple absence of a voidable property as a void without reason.

3 Schema and Data Conversion Tools

3.1 Schema Conversion

To date our process has been 'manual' based on both the narrative INSPIRE data specifications and
on the diagrams available in the consolidated UML model. This is laborious and unsustainable -
however it is/has been useful in exploring what an automated transformation would need to do and
where elements of human supervision or special casing (schema-specific 'rules') might be required.

Options for automated schema conversion include:

4

 ShapeChange (http://shapechange.net) looks like a very promising tool for automating the
conversion INSPIRE application schema to corresponding RDF/OWL vocabularies once the
particular transformation rules are settled.

We have had a 'quick' go at transforming a version of the INSPIRE application schema using
a relatively minimal ShapeChange configuration. We've noticed a few anomalies the
generated output, but nothing that could not be addressed, and many of which could be
addressed with a more sophisticated configuration or might have arisen due to user error.

 Fullmoon (https://code.google.com/p/fullmoon-framework/) from CSIRO may have broadly
similar capabilities to ShapeChange however it is harder to set up and experiment with. So far
we have not managed to use it successful, but have only invested a small amout of time in
trying.

 XSLT transform from the UML/XMI files. However this requires a detailed knowledge of the
XMI formats (or other XML based source formats) and much of that is already encapsulated
in ShapeChange/Fullmon.

Based on limited practical experience with these tools we would recommend working with the
contributors to ShapeChange to ensure that it is capable of implementing the transformation steps
that are finalised for this project.

3.2 Instance Data Conversion

The transformation of 'instance' data into RDF expressed using a particular set of vocabularies, in this
case derived from INSPIRE application schema, is quite different from the process of transforming the
application schema itself and likely requires some different tools (or at least different members from a
suite of tools). The tasks is illustrated in the diagram below and apart from the data that is going to be
presented as or transformed into RDF, there are two other necessary pieces of input. Firstly the target
linked data vocabulary/model which has been the main focus of this project; and secondly a plan for
the linked data URI space where the data is to be published. This latter interacts with notions of
persistent URI and 'the publishing commitment'1

1 In publishing the data what is the publishers commitment to its continued availability; at the URI where it is initial published;
how to date will it be maintained; and how much notice of change will be given in the event that the data is to be retired r
relocated. All questions of governance.

http://shapechange.net/
https://code.google.com/p/fullmoon-framework/

5

Data

Target Model

Bathing Waters
http://environment.data.gov.uk/id/bathing-water/{eubwid}
http://environment.data.gov.uk/id/bathing-water/{alias}

SamplingPoints
http://location.data.gov.uk/so/ef/SamplingPoint/bwsp.eaew/{pointid}

Annual Compliance Assessments
http://environment.data.gov.uk/data/bathing-water-quality
/compliance/point/{pointid}/year/{sampleYear}

In-Season Sample Assessments
http://environment.data.gov.uk/data/bathing-water-quality
/in-season/sample/point/{pointid}/date/{date}/time/{time}/recordDate/{recordDate}

Datasets
http://environment.data.gov.uk/data/bathing-water-quality
http://environment.data.gov.uk/data/bathing-water-quality/compliance
http://environment.data.gov.uk/data/bathing-water-quality/in-season

Vocabularies
http://environment.data.gov.uk/def/bathing-water/{term}
http://environment.data.gov.uk/def/bathing-water-quality/{term}
http://loccation.data.gov.uk/def/ef/SamplingPoint/{term}

Target URI Patterns

Transform

Data expressed in RDF
using the terms of the target model

and target URI patterns

It is also necessary think about how the publication is going to be organised and how it is going to be
maintained and updated - particularly with respect to the persistence of links that others make to the
published data.

The transformed data may be:

 materialised as individual 'documents' (.json, .gml, .rdf, .ttl, .html) published conventionally on
a web server. Each 'document' is effectively a 'small' graph (a spatial-object) about some
primary topic that may carry its own 'document' metadata.

Works for "spatial-objects as nodes" or "spatial-objects as graphs" approaches.

This style of publication enable 'link-following', but provides no means to query the data based
in its content.

 published, in aggregate, into the default-graph of triple store. This looses object boundaries in
the sense that it is not possible in general to segregate statements back into groupings
represent the individual 'documents' that were contributed.

Good for "Spatial-Objects as Nodes" approach only. Intrinsically queriable; linked data URI
can be 'animated' by frontend technologies ranging from Apache mod_rewrite to convert
request URI into SPARQL describe queries; to Pubby which provides RDF and HTML output
formats; and LDA (linked-data api - Elda and Puelia implementations) which provides URI
based querying capabilities and RDF, HTML and developer centric JSON and XML formats.

 published as named graphs in a Quad Store (with or without a UNION default graph). Very
like publishing materialised documents except each document/spatial-object(-version) is
publishing as a distinct graph in a SPARQL dataset. A UNION default graph gives a merged
view with potential for different object versions and/or different objects to provide contradictory
views via the default graph.

Good for "Spatial-Objects a Graphs" and "Spatial-Objects as Nodes" approaches. Intrinsically
queryable; Linked-data URI can be 'animated' as above.

These approaches are all based on some form of Extract, Transform and Load (ETL) model of
publishing.

http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://wifo5-03.informatik.uni-mannheim.de/pubby/
https://code.google.com/p/linked-data-api/wiki/Specification
https://github.com/epimorphics/elda
http://code.google.com/p/puelia-php/

6

Alternatively, data maybe

 left within an RDBMS can be left in place (or in a non mission critical mirror) and a query
translation data base adapter eg D2RQ can be use to create as SPARQL endpoint that maps
inbound SPARQL request to SQL queries and SQL resultsets either into SPARQL result set
(SPARQL select queries) or RDF graphs (SPARQL described and construct queries). Once a
SPARQL endpoint is achieve, link-following and/or URI based querying can be obtained in the
same way (mod_rewrite, Pubby or LDA... or something similar).

More recently the W3C have released as specification R2RML that can support the definition of both
query transformation and ETL transformation of the data.

In the work we have done to date we generally use an ETL based approach, using custom
transformation written in either Java, Ruby or more recently a simple data conversion templating
library/language named DCLIB (more below).

Query transformation approaches involve the creation of a mapping file (say in R2RML or in D2RQ
Mapping Language). Both commercial and open-source implementations of R2RML exist, though we
have no experience of using them in practice.

3.2.1 Conversion Tools

Tooling for converting data into RDF formats is relatively ad-hoc - unlike the eco-systems that have
grown up for getting data into and out of RDBMS systems.

In an ideal world something similar to the visual mapping UI of Microsoft's Sql Server Integration
Services (SSIS) with escapes in to programming to complex tasks: that helps builds conversion
workflows that include: data cleaning; reconciliation against and substitution of authoritative reference
data as well as data transformation. However, we are not aware of such a framework targetted
generation of linked data.

3.2.1.1 DCLIB

DCLIB (DataConversionLibrary) is an open-source project from Epimorphics. It provides a data
conversion library that can be built into a larger data conversion workflow and a simple command line
tool for the direct execution of transformation. We have build this library to support data conversion
task that we undertake for clients. Below is an example of a small template that is used to convert a
simple two column code list into RDF. The template is written as a JSON Object. The top-level
"Composite" template uses the oneOffs array of templates to generate preamble for the output and
then applies each of the templates to each row of the input table. Each template uses has an @id
field which is used to generate the subject URI for the triples generated by the template. The fields
that follow the @id field provide property/value pairs for that common subject. Values enclosed in
angle brackets generate URI values (a opposed to literal values). Most field can be either single
valued or array valued.

[{ name : "role",
 required : ["role_code","role_desc"],
 type : "Composite",
 bind : { "$base" : "http://environment.data.gov.uk/water-quality/def/roles" },
 oneOffs : [
 { "@id" : "<{$base}/>" ,
 "<rdf:type>" : "<owl:Ontology>",
 "<owl:imports>" : "<org:>"
 },
 { "@id" : "<{$base}/scheme>" ,
 "<rdf:type>" : "<skos:ConceptScheme>",
 "<rdfs:label>" : "A SKOS ConceptScheme for roles."
 }

],
 templates : [
 { "@id" : "<{$base}/{role_code.asNumber().format('%02d')}>" ,
 "<rdf:type>" : "<org:Role>" ,
 "<rdfs:label>" : "{role_desc.lang('en')}",
 "<skos:prefLabel>" : "{role_desc.lang('en')}",

http://d2rq.org/
http://www.w3.org/TR/r2rml/
https://github.com/epimorphics/dclib/wiki/Template-language
http://www.w3.org/TR/r2rml/
http://d2rq.org/d2rq-language
http://d2rq.org/d2rq-language
http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations
http://msdn.microsoft.com/en-us/sqlserver/cc511477.aspx
https://github.com/epimorphics/dclib

7

 "<skos:notation>" : "{role_code.asNumber().format('%02d')}",
 "<skos:inScheme>" : "<{$base}/scheme>",
 "<skos:topConceptOf>" : "<{$base}/scheme>"
 }
]
 }
]

DCLIB uses an embedded expression language (JEXL) which provides a means to manipulate input
values (eg. date and time parsing, creating composite values from multiple fields, syntactic fomatting
of literals and the like).

DCLIB is a work in progress and continues to acquire new features.

3.2.1.2 OpenRefine (formerly Google Refine, formerly GridWorks))

Open Refine can be used to capture a data transformation and apply it to tabular input. it can also be
used to clean-up and reorganise tabular data prior to transformation.

The screenshots below illustrate the use of Open Refine for transforming reference data about
bathing-waters and their sampling points.

OpenRefine is a useful tool for developing a data transform in an iterative fashion, however in
operation it seems to need to hold the whole data set being transformed in memory - which limits the
size of the data tables that can be transformed. It can be a useful way to generate test sets of 'correct'
data against which transformation via some other technique can be checked.

The refine framework introduces a key notion of reconciliation, such that references made in one data
set can be reconciled against data in a foreign dataset and hence give rise to references made
directly with URI from the dataset that the data being transformed is reconciled against.

The screen shots below illustrate an experimental attempt to use OpenRefine to transform reference
data for the UK Environment Agency linked data bathing water quality site into RDF.

http://commons.apache.org/proper/commons-jexl/

8

3.2.1.3 Topbraid Composer

The Topbraid suite of products from TopQuadrant include facilties to create graphical mapping from a
source table to a target vocabulary. There is a function library for manipulating and combining/splitting
data from different fields. Not the easiest of tools to drive, but potentially very capable. I believe that
the resulting transformations can be exports so that they can used in an automated data conversion
workflow. We not tried these facilities on anything other than an experimental basis. The screenshot
below is of an attempt

The screen shots below illustrate an experimental attempt to use Topbraid Composer's SPINMap
capability to transform reference data for the UK Environment Agency linked data bathing water
quality site into RDF.

http://composing-the-semantic-web.blogspot.co.uk/2011/04/spinmap-sparql-based-ontology-mapping.html

9

3.2.2 Commercial ETL Tools

We would expect mainstream commercial ETL tools such as FME to have at least plug-ins with RDF
generating capability. However, we use predominately open-source tooling and have not made use of
commerical ETL tools.

4 Architecture and Infrastructure Components

4.1 Registers and Registries

At one some level registers are simply lists whose entries are closely managed, and registries are
systems that provide the means to implement registers. In part at least they provide the means to
mechanise aspects of governance processes. Register items (list entries) can only be made a
controlled manner and it is governance processes that exercise that control. The other side of the
equation is any operational significance to the presence of an entry in a register.

Registers are typically used express some measure of organisational disposition with respect to the
items contained therein - for example the diagram below shows the lifecycle model for a register item
adopted by the UKGovLD open source registry (see also https://github.com/UKGovLD/ukl-registry-
poc/wiki/Principles-and-concepts)

https://github.com/UKGovLD/ukl-registry-poc
https://github.com/UKGovLD/ukl-registry-poc/wiki/Principles-and-concepts
https://github.com/UKGovLD/ukl-registry-poc/wiki/Principles-and-concepts

10

Register Items typically have a

Registries support the discovery and management of register items within a register. In general
registers may be hierarchical (a register of registers... and so-on). In some cases individual register
items and the total state of the register at a given instant may be versioned should it be necessary to
maintain a history of change in the state of a register. Registered items are typically vocabulary
artefacts: classes, properties, codelist and enumerations, application schema and so forth.

The lack of presence of an item in a register can have operational consequences.

 Data may be validated against the contents of one (or more) registers to ensure that the
terms used (classes, properties, datatypes, codepoints etc.) are appropriately registered- use
of an unregistered term in a document renders the document as invalid.

 Data conversion or mapping tools for mapping from table or data base schema into RDF may
consult application-schema specific registers to offer mapping developing guided choices of
target class, property or codepoint.

INSPIRE in RDF has a few consequences for registers and registries:

 Registers must be capable of registering the definition of RDF terms (classes, properties,
codelist (expressed as skos) and enumerations derived from INSPIRE application schema -
and from local member-state extensions.

It should be able to related those RDF vocabulary terms to the source application-schema
from which they were derived. These relations need to be navigable in both directions.

Alternatively or as well as, the existing INSPIRE registers and feature catalogs need to be
extended to include reference to the derived RDF terms - particularly where mapping to pre-
existing non-INSPIRE derived vocabulary is used eg. relating say a ResponsibleParty to a
foaf:Agent.

 The registers need to be capable of adopting terms used and defined elsewhere so that their
use may be validated. This applies both

o to terms defined in local members state or organisational registers (federation); and

o to terms whose use is imported from widely used RDF vocabulary (eg. from ORG or
FOAF or DC) without themselves ever having been elements of an established
application schema (their use is more a consequence of a mapping into RDF) and
possibly the application of some local practices.

11

 RDF/linked-data format representations2 of Register Items and their corresponding
Registered items should be available.

4.2 Metadata and Catalogues

Further study is needed to understand the relationship and roles of ISO 19115 metadata in contrast to
linked data metadata vocabularies such as Dublin Core (DC), Vocabulary of Interlinked Datasets
(VoiD) and Data Catalog Vocabulary (DCAT) and whether and how to project ISO 19115 compliant
metadata in a form that aligns with VoiD and DCAT, whether to more directly map ISO 19115
constructs into an RDF/OWL vocabulary as has been done for example by Simon Cox (see
http://def.seegrid.csiro.au/static/isotc211/iso19115/2003/metadata.ttl)

For RDF/linked data, metadata is just data about a different subject. Where we have a spatial-object
(as a graph) that contains data about, say "Manchester Piccadilly Railway Station", and about the
spatial-object itself, the information about the railways station is typically referred to as 'the data' and
the information about the object (or containing document or graph) is typically referred to as 'the
metadata'.

In DCAT, illustrated in the diagram below, notice the separation between datasets (dcat:Dataset) and
catalog records (dcat:CatalogRecord). Note that while they share many Dublin Core properties
(dct:title, dct:description, dct:modified), in use they each pertain to their respective direct subject ie.
dataset or a catalog.

Presenting a catalog record as a named graph in a similar style to our Spatial-Objects as Graphs
approach an example catalog record for an example data set might look something like this:

2 webarch:representation as in http://www.w3.org/TR/webarch/

http://dublincore.org/documents/dcmi-terms/
http://www.w3.org/TR/void/
http://www.w3.org/TR/void/
http://www.w3.org/TR/vocab-dcat/
http://def.seegrid.csiro.au/static/isotc211/iso19115/2003/metadata.ttl
http://www.w3.org/TR/webarch/

12

ex:dsRecord {

 ex:dataset a dcat:Dataset ;

 dct:title "An example dataset" ;

 dct:modified "2012-04-01"^^xsd:date

 .

 ex:dsRecord a dcat:CatalogRecord ;

 dct:title "Catalog record for an example dataset"

 foaf:primaryTopic

 ex:dataset ;

 dct:modified 2014-05-07"^^xsd:date

 .

}

Note, for example, that the catalog record was modified more recently than the dataset.

In ISO 19115 the specification sets up a 'describes/has' association between a dataset (DS_Dataset)
and its metadata records (MD_Metadata). The properties of MD_Metadata and its satellite aggregates
may be making statements about a mixture of subjects and we face the same "what's the subject?"
question as was faced when trying to formulate spatial-objects in RDF. The describes association role
suggest that the properties of MD_Metadata 'describe' a DS_Dataset. This surfaces the tensions
discussed in our earlier deliverable.

class Context Diagram: MD_Metadata

Maintenance information::MD_MaintenanceInformation

+ contact: CI_ResponsibleParty [0..*]
+ dateOfNextUpdate: Date [0..1]
+ maintenanceAndUpdateFrequency: MD_MaintenanceFrequencyCode
+ maintenanceNote: CharacterString [0..*]
+ updateScope: MD_ScopeCode [0..*]
+ updateScopeDescription: MD_ScopeDescription [0..*]
+ userDefinedMaintenanceFrequency: TM_PeriodDuration [0..1]

«CodeList»
Identification information::

MD_CharacterSetCode

+ (reservedforfutureuse)
+ 8859part1
+ 8859part10
+ 8859part11
+ 8859part13
+ 8859part14
+ 8859part15
+ 8859part16
+ 8859part2
+ 8859part3
+ 8859part4
+ 8859part5
+ 8859part6
+ 8859part7
+ 8859part8
+ 8859part9
+ big5
+ ebcdic
+ eucJP
+ eucKR
+ GB2312
+ jis
+ shiftJIS
+ ucs2
+ ucs4
+ usAscii
+ utf16
+ utf7
+ utf8

«CodeList»
Maintenance information::

MD_ScopeCode

+ attribute
+ attributeType
+ collectionHardware
+ collectionSession
+ dataset
+ dimensionGroup
+ feature
+ featureType
+ fieldSession
+ model
+ nonGeographicDataset
+ propertyType
+ series
+ service
+ software
+ ti le

«datatype»
Citation and responsible party information::

CI_ResponsibleParty

+ contactInfo: CI_Contact [0..1]
+ individualName: CharacterString [0..1]
+ organisationName: CharacterString [0..1]
+ positionName: CharacterString [0..1]
+ role: CI_RoleCode

«type»
Date and Time::Date

{root}

+ century: CharacterString
+ day: CharacterString [0..1]
+ month: CharacterString [0..1]
+ year: CharacterString [0..1]

«metaclass»
General Feature Model::

GF_AttributeType

+ cardinality: Multiplicity
+ valueDomain: CharacterString
+ valueType: TypeName

«metaclass»
General Feature Model::

GF_FeatureType

+ definition: CharacterString
+ isAbstract: Boolean = false
+ typeName: LocalName

Identification information::MD_Identification

+ abstract: CharacterString
+ citation: CI_Citation
+ credit: CharacterString [0..*]
+ pointOfContact: CI_ResponsibleParty [0..*]
+ purpose: CharacterString [0..1]
+ status: MD_ProgressCode [0..*]

«type»
Text::CharacterString

+ /characterSet: CharacterSetCode = "ISO 10646-2"
+ elements: Character [size]
+ maxLength: Integer
+ size: Integer

+ <(CharacterString*): Boolean
+ <=(CharacterString*): Boolean
+ <>(CharacterString*): Boolean
+ =(CharacterString*): Boolean
+ >(CharacterString*): Boolean
+ >=(CharacterString*): Boolean
+ isNull(): Boolean
+ subString(Integer*, Integer*): CharacterString
+ toLower(): CharacterString
+ toUpper(): CharacterString

Data quality information::

DQ_DataQuality

+ scope: DQ_Scope

Metadata application information::

DS_DataSet

Spatial representation information::

MD_SpatialRepresentation

Reference system information::

MD_ReferenceSystem

+ referenceSystemIdentifier: RS_Identifier [0..1]

Content information::

MD_ContentInformation

Portrayal catalogue information::

MD_PortrayalCatalogueReference

+ portrayalCatalogueCitation: CI_Citation [1..*]

Distribution information::

MD_Distribution

Metadata extension information::

MD_MetadataExtensionInformation

+ extensionOnLineResource: CI_OnlineResource [0..1]

Application schema information::

MD_ApplicationSchemaInformation

+ constraintLanguage: CharacterString
+ graphicsFile: BinaryData [0..1]
+ name: CI_Citation
+ schemaAscii: CharacterString [0..1]
+ schemaLanguage: CharacterString
+ softwareDevelopmentFile: BinaryData [0..1]
+ softwareDevelopmentFileFormat: CharacterString [0..1]

MD_Metadata

+ characterSet: MD_CharacterSetCode [0..1] = "utf8"
+ contact: CI_ResponsibleParty [1..*]
+ dataSet: CharacterString [0..1]
+ dateStamp: Date
+ fi leIdentifier: CharacterString [0..1]
+ hierarchyLevel: MD_ScopeCode [0..*] = "dataset"
+ hierarchyLevelName: CharacterString [0..*]
+ language: CharacterString [0..1]
+ locale: PT_Locale [0..*]
+ metadataStandardName: CharacterString [0..1]
+ metadataStandardVersion: CharacterString [0..1]
+ parentIdentifier: CharacterString [0..1]

Constraint information::MD_Constraints

+ useLimitation: CharacterString [0..*]

+applicationSchemaInfo

0..*

+referenceSystemInfo 0..*

+metadataConstraints 0..*

+metadataExtensionInfo

0..*

+featureAttribute

0..*

+featureAttributeMetadata

0..*

+featureTypeMetadata

0..*

+featureType

0..*

+identificationInfo

1..*

+spatialRepresentationInfo 0..*

+has 1..*

+describes 0..*

+portrayalCatalogueInfo

0..*

+contentInfo 0..*

+distributionInfo

0..1

+metadataMaintenance 0..1

+dataQualityInfo 0..*

13

The aggregate structure or a data set expressed via DS_Aggregate and its MultipleAggregation
association is typically expressed in linked-data using the VoID vocabulary and setting up void:subset
relations between a void:Dataset and its subordinates

4.3 Geospatial Services

Resolving feature URI to spatial-objects is very close in spirit to the ISO/OGC Web Feature Service.
For GML representations of spatial-objects a spatial-object URI could be made to resolve into a WFS
call for a particular feature. A common pattern of the web is for the truncations of hierarchical URI to
list entities for example:

http://environment.data.gov.uk/id/bathing-water

lists UK bathing waters designated under the EU Bathing Water Directive while:

http://environment.data.gov.uk/id/bathing-water/ukc2102-03600

is a particular bating water in the North East of England. Similarly parameters added to list URIs can
be used to generate filtered responses eg:

http://environment.data.gov.uk/id/bathing-water?type=LakeBathingWater

http://environment.data.gov.uk/doc/bathing-water?min-samplingPoint.easting=362452&max-
samplingPoint.easting=494951&min-samplingPoint.northing=159624&max-
samplingPoint.northing=302123

limits responses to bathing waters that are lakes or within a given bounding box.

At least in principle, for GML responses these request URI could be transformed in to WFS calls that
return feature collections corresponding to the requested items.

Geospatial support with linked-data stores is becoming more common. Initially it was a differentiator
generally for commercial offerings. GeoSPARQL is bringing about some consolidation, although there
are also alternative open-source offerings such as Strabon and its stSPARQL variant.

One particular aspect of geospatial data that needs to be addressed some way is the range of spatial
reference systems that may be used in a response. In particular, whilst it may be tempting to think of
the point coordinates of a points in geometries being store in triplestores (whether as literal valued
position lists with multiple coordinates embedded in a literal - or as x-y coordinate property values

class Fig 3 : Metadata application

Metadata entity set information::MD_Metadata

DS_Aggregate

DS_DataSet

+superset
0..*

MultipleAggregation

+subset
0..*

+has

1..*

+describes
0..*

+composedOf

1..*

+partOf

0..*

+seriesMetadata 1..*

+series 0..*

http://environment.data.gov.uk/id/bathing-water
http://environment.data.gov.uk/id/bathing-water/ukc2102-03600
http://environment.data.gov.uk/id/bathing-water?type=LakeBathingWater
http://environment.data.gov.uk/doc/bathing-water?min-samplingPoint.easting=362452&max-samplingPoint.easting=494951&min-samplingPoint.northing=159624&max-samplingPoint.northing=302123
http://environment.data.gov.uk/doc/bathing-water?min-samplingPoint.easting=362452&max-samplingPoint.easting=494951&min-samplingPoint.northing=159624&max-samplingPoint.northing=302123
http://environment.data.gov.uk/doc/bathing-water?min-samplingPoint.easting=362452&max-samplingPoint.easting=494951&min-samplingPoint.northing=159624&max-samplingPoint.northing=302123
http://www.strabon.di.uoa.gr/about
http://www.strabon.di.uoa.gr/files/stSPARQL_tutorial.pdf

14

expressed as a node representing a point in some RDF graph) it seem unlikely that one would want to
materialise geometries within the store in ALL the possible spatial reference systems that might be
served by the system. It's more likely that the core of the system will store data using single
coordinate reference system.Uploaded data and queries (with spatial filters of some sort) will need
coordinate references to be transformed on the way into the system and downloaded data and query
responses will need to be transformed on their way out.

